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 研究背景与关键科学问题 

 主要研究进展 

 稻田固碳的生物地球化学机理 

 稻田固碳与甲烷排放矛盾及协调机制 

 研究展望 

内 容 提 要 



  全球：1.53 亿公顷  
(FAOSTAT database) 

  中国：0.23亿公顷 （15%） 

  土壤固碳潜力：0.5 t C/y            

(IPCC, 1995, 2007; Lal, 2004) 

研 究 背 景 

  第二次土壤普查前后资料比较 

  长期定位试验典型处理研究 

国内 

研究 



稻田固碳是“双刃剑”，甚至是陷井！ 

 全国稻田面积：2300万公顷 

 稻草量：2~3亿吨/年（0.8~1.2亿吨碳） 

 固碳潜力： 500-1000 万吨碳/年（年限？？） 

 CH4排放量：110 ~ 290 kg / ha  

            总量：> 500万吨  

         （温室效应：>  5 亿吨CO2当量） 

稻田增碳对我国承担温室气体减排义务有利吗？ 



  稻田土壤是否存在持续固碳的生物

地球化学特性？ 

 如何解决稻田土壤固碳与甲烷排放的

矛盾？ 

关 键 学 科 问 题 



主要研究进展 

 稻田固碳的生物地球化学机理 

 稻田固碳与甲烷排放矛盾及协调机制 



稻田固碳的生物地球化学机理 

 稻田有机碳来源是否可支撑其长期固碳？ 

 稻田的物理-生物条件是否有利于固碳（分

解、矿化）？ 

 稻田是否存在特别的固碳途径？ 

  14C-标记模拟试验 

有机物矿化 

微生物周转 

微生物固碳 

14C-CO2连续标记 （水稻、土壤） 
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近50年来我国亚热带稻田生产力变化 

（Wu, WCSS, 2010; EJSS, 2011） 

亚热带稻田生产力持续增加（50年） 



施氮促进水稻光合同化碳的根际沉积作用 

SOC14/水稻碳累积量 (%) 

N0 1.1±0.2 c 

N1 6.8±1.8 b 

N2 6.0±0.8 b 

N3 12.7±3.4 a 

N0，N1，N2，N3分别为0 、10、20 、40 

mg N kg-1土 

施氮水平对水稻根际沉积效率的影响 

根际沉积效率 （%） 
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典型稻
田土壤 

量化水稻光合同化碳对土壤碳库的贡献 

Ge & Wu et al. SBB, 2012, 48: 39-49 
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李苗苗，葛体达等， 环境科学， 2013，待刊 

 水稻光合同化碳均进入了土壤的

各个粒径和密度分组的团聚体中；

且主要固定在大粒径的轻组组分中，

表现出碳汇功能。  



负激发效应 
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培养100d后，“新碳”和原有机碳的累积矿化量 

新  碳 原有有机碳 
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光合碳的输入抑制了稻田土壤原有SOC的矿化 

Ge & Wu et al. SBB, 2012, 48: 39-49 
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水稻土和旱地土壤中微生物生物量的周转时间 

（●葡萄糖；▲稻草） （Wu et al. JSFA, 2012, 92:1031-1037 ） 
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培养时间（d） 

稻田土壤微生物生物量的周转速率大于旱地土壤 



葡萄糖和稻草在水稻土和旱旱地土壤中的累积矿化率

（ ●水稻土；●旱土） 
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培养时间（d） 

葡萄糖 稻草 

（Wu et al. JSFA, 2012, 92:1031-1037） 

稻田土壤添加葡萄糖和稻草，其矿化率低于旱地土壤 



添加葡萄糖和稻草对水稻土原有有机碳矿化的影响
（Wu et al. JSFA, 2012, 92:1031-1037） 
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培养时间（d） 
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 遮光处理的土壤，未检测到SOC14和MBC14 

 不同土壤SOC14和MBC14含量差异显著，稻田的大于旱地 

土壤 

Yuan, Ge & Wu et al. AEM, 2012, 78: 2328-2336  

土壤微生物具有可观的碳同化潜力 

土壤微生物对大气CO2的同化作用 

（25oC; 80天；P为水稻土，U为旱土） 
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土壤微生物光合固碳酶（RubisCO）活性 （光照/遮光） 

土壤 

Yuan, Ge & Wu et al. AEM, 2012, 78: 2328-2336  

遮光使RubisCO酶活性显著降低 
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)  固碳细菌  0.04–1.3×108  

  蓝细菌      0.2–1.9×106 

  藻    类      0.02–1.8×106 

  固碳细菌>>藻类 

  遮光后细菌和藻类丰度显著下降 

固碳细菌 cbbL genes  蓝细菌 cbbL genes  

藻类 cbbL genes  

固碳细菌、蓝细菌和藻类cbbL基因拷贝数 

Yuan, Ge & Wu  et al. AEM, 2012, 78: 2328-2336  
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遮光使碳同化功能微生物种群结构发生变化 
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r = 0.716* 

RubisCO activity  

 光合固碳速率VS固碳酶活性 

 光合固碳速率VS固碳基因丰度 

 光合固碳酶活性VS固碳基因丰度 

   呈显著正相关 (P<0.01) 

Yuan, Ge & Wu  et al. AEM, 2012, 78: 2328-2336  

碳同化速率、酶活性、cbbL丰度的相关性 



长期定位施肥稻田土壤细菌cbbL、RubisCO酶活性  
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RubisCO 活性 细菌cbbL 

年同化速率：100~450 kg C ha-1 

Yuan, Ge & Wu et al. AMB, 2012, 95:1061–1071 

稻田土壤中存在相当数量cbbL和较高RubisCO活性 

（田间原位采样测定） 



小  结 

   明确稻田土壤较旱地土壤具有更高的微生物生物量，

微生物活性，其周转速率更快但对有机质的消耗更少 

  发现土壤微生物具有固碳功能，量化了光合固碳关键

酶RubisCo酶的活性，并明确固碳微生物功能群 

  施氮促进了水稻新鲜根际碳的沉积，高氮水平下根际沉

积的碳量高于低氮和中量氮水平 



 CH4排放的主控机制？ 

   （14C标记培养实验） 

 如何降低CH4排放？ 

   （长期田间试验） 

稻田固碳与减排的矛盾与协调机制 
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稻田CH4排放量随稻草就地还田量的增加而增加 
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有机物质投入5~6 吨/公顷·年，可维持SOC平衡 
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来源于稻草CH4释放随着稻草还田量增加呈指数增加 
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稻草对水稻土有机质产生CH4的“激发效应” 
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有机碳和养分损失 

环境污染 

稻田甲烷排放控制机制 (稻草“易地还土”）  

稻田固碳是有限的、CH4释放是永久的！ 

土壤快速改良 

水土流失控制 

转移固碳 

CH4减排 



丘陵区稻田：1600万公顷 

          （占 70%) 

亚热带丘陵区稻田-旱地有机碳系统

管理的可行性 



试验：旱地、果园、茶园、菜地 

施用量：12.8 t /公顷·年 

     （旱地：前茬覆盖、后茬翻耕入土）  

亚热带丘陵区稻草“易地还土”定位试验 

（2000年起） 

油菜、红薯、玉米、蚕豆等 



SOC（g/kg） 

湖南12个长期定位试验：在化肥充足情况下， 

水稻产量与土壤有机碳含量的关系 
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化肥充足的情况，水稻产量与SOC含量呈负相关 



新垦旱地施用稻草土壤有机碳变化  

 (Zhu & Wu et al. Plant and Soil, 2010, 331: 427-437) 
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稻草易地还土，新垦旱地红壤SOC含量升高 
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(Zhu & Wu et al. Plant and Soil, 2010, 331: 427-437) 

稻草易地还土使红壤旱地生产力提高 



稻草量（t / ha） 

旱地施用稻草的CH4排放总量及减排效应 
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稻草易地还土显著减少旱地甲烷的排放 



稻草“易地还土”： 

 减轻稻草就地还田压力；减少稻田CH4排放 

 增强旱地土壤的碳汇功能，节省化肥 

  提高旱地生产力 

稻草“就地还田”： 
 稻田无稻草输入时，CH4排放可维持在很低的水平 

 稻田甲烷排放量随稻草就地还田量的增加而急剧增加 

 显著诱发稻田土壤原有有机质释放甲烷，具有明显的

正激发效应 

 

小  结 



研 究 展 望 

   稻田固碳趋势明显，但未来潜力不明确 

    （加强土壤生物过程研究） 

  重新审视依靠有机物投入（稻草还田）维持的稻

田土壤固碳作用，需要找到稻草处置措施 

    （推行稻草“易地还土”，温室气体减排潜力巨大：

不仅中国需要、所有水稻种植国家都可适用） 

 土壤微生物固碳是未被认识的“碳循环”重要过

程 

    （开展在自然条件下的固碳速率研究） 
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